
ASEN5317 - Computational Fluid Dynamics
Instructor: Professor L. Kantha

Homework #2:
Numerical Integration

by

 Joseph P. Kubitschek
25 September 1998

ABSTRACT
Various numerical integration techniques were used to evaluate the integrals of different
functions to gain familiarity with those techniques. For problem 1, the Trapezoidal Rule
and Simpson’s Rule were employed to develop code and evaluate two integrals, f(x) =
1/(1+x2) and f(x) = exsin(πx) over the range 0<x<1, corresponding with two different step
sizes, h=0.10 and 0.05. The results were compared from the standpoint of relative
accuracy and indicate that Simpson’s Rule provides fifth order accuracy while the
Trapezoidal Rule only provides third order accuracy, as indicated by theory. Furthermore,
Richardson’s Extrapolation was used to improve the accuracy of the results. For problem
2, existing code was obtained from Numerical Recipes1 and used to compute the integral
of f(x) = x4log(x+(x2+1)1/2) over the range 0<x<2 using the various “refined” techniques
available (i.e. QTRAP, QSIMP, QROMB, POLYINT, and TRAPZD). Finally, part 3,
includes the integral evaluation of f(x) = sin(x)/x over the range 0<x<π/2. Existing code
was modified to handle the singularity that exists at the lower limit, x = 0.

2

INTRODUCTION
The purpose of this project was to gain increased familiarity with FORTRAN coding
through the integral evaluation of various functions using numerical integration
techniques.

Background
Integration, in it simplest sense, consists of evaluating the area under a curve, y = f(x) over
a specified range. Theoretically, integration of some function f(x) is equivalent to solving
the differential equation dy/dx = f(x). In this case, the limits of integration are merely the
required boundary conditions. It was recognized early in history that such problems could
be solved using various numerical integration techniques. Such techniques, also called
quadrature, became very powerful with the advent of the computer. As such, the various
techniques have been refined to improve accuracy and efficiency in the context of
computing. Of the many techniques developed, this investigation focuses on three, namely
the Trapezoidal Rule, Simpson’s Rule, and the Romberg Method.

The Trapezoidal Rule is a two-point formula that is exact for polynomials of order 1 or
less (i.e. a straight lines). The formula is obtained by passing a straight line through two
points and then evaluating the area under this line (Kantha, Lecture Notes). Using
Lagrange interpolation, the formula is obtained as

∫ f(x)dx = h[f1 + f2]/2 + O(h3f’’),

where, h = interval or step size.

The resulting Trapezoidal Rule formula is accurate to order 3, a result of the truncation
error associated with neglecting higher order terms. This formula may be extended to a
specified degree of accuracy by dividing the range of integration into (n-1) intervals. The
resulting formula is

∫ f(x)dx = h[f1/2 + f2 + … + fn-1 + fn/2] + O(1/n2).

Alternatively, Simpson’s Rule is a three-point formula that is exact for polynomials of
order three or less. The primary advantage of this formula over the Trapezoidal Rule
formula is improved accuracy for higher order polynomials (Kantha, Lecture Notes). The
resulting formula obtained by passing a second order polynomial through three points is

∫ f(x)dx = h[f1 + 4f2 + f3]/3 + O(h5f(4)).

This formula is accurate to order 5 and may also be extended to improve accuracy to a
specified degree by interval halving. Again, this is achieved by dividing the range of
integration into (n-1) intervals. The resulting formula is

∫ f(x)dx = h[f1 + 4f2 + 2f3 + 4f4 + … + 2fn-2 + 4fn-1 + fn]/3 + O(1/n4).

3

For both techniques previously described, a technique known as Richardson extrapolation
may be employed to improve accuracy. The last technique considered here is called the
Romberg Method and uses this extrapolation technique to improve accuracy of the simple
Trapezoidal Rule.

Solution Technique
For problem 1, the evaluation of the integrals of f(x) = 1/(1+x2) and f(x) = exsin(πx) over
the range 0<x<1, code was developed independently using the Trapezoidal Rule and
Simpson’s Rule. These programs, called trap.f, trap2.f, simp.f, and simp2.f divide the
range of integration into equal intervals, h = 0.10 and h = 0.05 corresponding with 10 and
20 equal intervals, respectively and compute the values of the integrals over the specified
range. The relative error is then computed using the exact values. Finally, Richardson
extrapolation is used to improve accuracy. In each case, the relative error is compared.
The exact value was obtained using the CRC Standard Mathematical Tables and
Formulae5, table of integrals. The theoretically exact results were obtained as

∫ 1/(1+x2)dx = tan-1(x),

∫ exsin(πx)dx = ex[sin(πx) - πcos(πx)]/(1+π2),

from which the exact values were computed over the limits of integration, 0<x<1.

Problem 2 also consists of numerical integration using the described techniques.
However, existing “refined” code, obtained from Numerical Recipes1, is used to evaluate
the integral of f(x) = x4log(x+(x2+1)1/2) over the range 0<x<2. For part a, QTRAP and
TRAPZD are used in the driver code hw22a.f; For part b, QSIMP and TRAPZD are used
in the driver code hw22b.f; And, for part c, QROMB, POLYINT, and TRAPZD are used
in the driver code hw22c.f. The exact value was obtained from the table of integrals as

∫ x4log(x+(x2+1)1/2)dx = (x5/5)log[x+(x2+1)1/2] - (x2+1)1/2[(x4/25)+(4x2/75)-(8/75)]

Finally, for problem 3, TRAPZD is replaced by an open formula to evaluate the integral of
f(x) = sin(x)/x over the range 0<x<π/2. This routine makes use of MIDPNT, in the driver
code hw23.f, to handle the singularity at the lower limit of integration, x = 0. The exact
value was obtained as before as

∫ [sin(x)/x]dx = Σ0
∞ (-1)n(x)2n+1/(2n+1)(2n+1)! (infinite series)

RESULTS AND DISCUSSION
Table 1 represents the results of problem 1. Each of the integrals were evaluated using the
methods described and the results were tabulated accordingly. The results indicate the
relative degree of accuracy inherent in each numerical integration technique. Simpson’s
Rule in both integral evaluation cases reflects improved accuracy over the Trapezoidal
Rule as expected. Additionally, one can see the improvement in accuracy through the use

4

of Richardson extrapolation. For the Trapezoidal Rule, Richardson extrapolation
improves the degree of accuracy by a minimum of two orders of magnitude.

Table 1. - Numerical integration results (Problem 1a.-d.)
Trapezoidal Rule Simpson’s Rule

f(x) = 1/(1+x2) exp(x)sin(ππx) 1/(1+x2) exp(x)sin(ππx)
Exact 0.785398 1.074678 0.78539816 1.07467819
Comp h = 0.10 0.784982 1.064967 0.78539824 1.07472277
Error 0.000416 0.009711 -0.00000008 0.00004458
Comp h = 0.05 0.785294 1.072278 0.78539813 1.07476400
Error 0.000104 0.002400 0.00000004 0.00000359
Richardson Extrap. 0.785398 1.074715 0.78539814 1.07476675
Error 0.000000 -0.000037 0.00000002 0.00000084

Note: Error = Exact - Computed.

For the refined subroutines used in problem 2, the relative accuracy of each numerical
integration technique is also visible. Table 2 represents the results of each technique. It is
interesting to note that all three techniques return the same value to the specified degree of
accuracy as guaranteed by the refinement that is inherent. An attempt was made to assess
the efficiency of each algorithym using a call to the CPU clock. However, this approach
was not successful as the command used did not return a result. Alternatively, a count of
the number of iterations or function evaluations could have been used to compare relative
efficiency.

Table 2. - Numerical integration results using “refined” subroutines (Problem 2a.-c.)
QTRAP QSIMP QROMB

Computed Results 3.540961 3.540961 3.540961

Finally, Table 3 represents the results of the integral value of f(x) = sin(x)/x. In this case
an open formula was used to handle the singularity which exists at the lower limit, x = 0.

Table 3. - Numerical integration results (Problem 3.)
MIDPNT

Computed Result 1.370615
Exact 1.370762
Error 0.000146

Note: Error = Exact - Computed.

CONCLUSIONS

• Simpson’s Rule provides improved accuracy over the Trapezoidal Rule consistent with
theory and as demonstrated by the results from problem 1.

5

• Richardson extrapolation is a powerful technique for improving accuracy of both the
Trapezoidal Rule and Simpson’s Rule. In the case of the Trapezoidal Rule,
Richardson extrapolation improves accuracy by at least two orders of magnitude.

• The refined techniques obtained from Numerical Recipes1 are powerful and efficient
methods of integral evaluation to a degree of accuracy specified apriori.

• Singularities that may exist can easily be handled using refined techniques also
obtained from Numerical Recipes1. In this case, open formulas are used.

6

REFERENCES

1. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical
Recipes in Fortran 77, 2nd Edition, Volume 1, Cambridge University Press, 1992.

2. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical

Recipes in Fortran 77 – Examples Book, Cambridge University Press, 1992.

3. Chapra, S.C., and Canale, R.C., Introduction to Computing for Engineers, McGraw-

Hill Book Co., 1986.

4. Loukides, M., UNIX for Fortran Programmers, O’Reilly and Associates, Inc., 1990.

5. Zwillinger, D., CRC Standard Mathematical Tables and Formulae, 30th Edition, CRC

Press, 1996.

7

APPENDIX A – FORTRAN CODE

PROBLEM 1.a.)
c Program trap.f
c
c ASEN5317 - Assign#2
c J.Kubitschek 9/18/98
c
c Program evaluates integral of two functions:
c 1.) f(x)= 1/(1+x^2)
c 2.) f(x)= exp(x)sin(pi*x)
c over the range 0<=x<=1 using trapezoidal rule. Range is
c divided into 10 equal intervals. Results include integral
c values and global error.
 INTEGER n
 REAL x,pi,del,s1,s2,f1,f2,e1,e2,r1,r2,f1sum,f2sum
c
 pi=3.14159265
 x=0.0
 f1sum=1.5
 f2sum=exp(1.0)*sin(pi)
 s1=0.0
 s2=0.0
 e1=0.0
 e2=0.0
 r1=0.0
 r2=0.0
 del=1.0/10.0
 do n=1,9
 x=n*del
 f1=2.0/(1.0+x**2)
 f2=2.0*exp(x)*sin(pi*x)
 s1=s1+f1
 s2=s2+f2
 end do
 r1=(del/2.0)*(s1+f1sum)
 r2=(del/2.0)*(s2+f2sum)
 e1=atan(1.0)-r1
 e2=((pi/(1+pi**2))*(exp(1.0)+1))-r2
c
 open (unit=45,file='hw2_1a1.out',status='unknown')
 write (45,*)'trap.f output'
 write (45,*)' f1(x)',' error1',' f2(x)',' error2'
 write (45,10) r1,e1,r2,e2
10 format(1x,f8.6,2x,f8.6,2x,f8.6,2x,f8.6)
 END

8

PROBLEM 1.b.)
c Program trap2.f
c
c ASEN5317 - Assign#2
c J.Kubitschek 9/18/98
c
c Program evaluates integral of two functions:
c 1.) f(x)= 1/(1+x^2)
c 2.) f(x)= exp(x)sin(pi*x)
c over the range 0<=x<=1 using trapezoidal rule. Range is
c divided into 20 equal intervals. Results include integral
c values and global error.
 INTEGER n
 REAL x,pi,del,s1,s2,f1,f2,e1,e2,r1,r2,f1sum,f2sum
c
 pi=3.14159265
 x=0.0
 f1sum=1.5
 f2sum=exp(1.0)*sin(pi)
 s1=0.0
 s2=0.0
 e1=0.0
 e2=0.0
 r1=0.0
 r2=0.0
 del=1.0/20.0
 do n=1,19
 x=n*del
 f1=2.0/(1.0+x**2)
 f2=2.0*exp(x)*sin(pi*x)
 s1=s1+f1
 s2=s2+f2
 end do
 r1=(del/2.0)*(s1+f1sum)
 r2=(del/2.0)*(s2+f2sum)
 e1=atan(1.0)-r1
 e2=((pi/(1+pi**2))*(exp(1.0)+1))-r2
c
 open (unit=45,file='hw2_1b1.out',status='unknown')
 write (45,*)'trap2.f output'
 write (45,*)' f1(x)',' error1',' f2(x)',' error2'
 write (45,10) r1,e1,r2,e2
10 format(1x,f8.6,2x,f8.6,2x,f8.6,2x,f8.6)
 END

9

PROBLEM 1.a.)
c Program simp.f
c
c ASEN5317 - Assign#2
c J.Kubitschek 9/18/98
c
c Program evaluates integral of two functions:
c 1.) f(x)= 1/(1+x^2)
c 2.) f(x)= exp(x)sin(pi*x)
c over the range 0<=x<=1 using Simpson's rule. Range is
c divided into 10 equal intervals. Results include integral
c values and global error.
 INTEGER n
 REAL x,pi,del,s1,s2,f1,f2,e1,e2,r1,r2,f1sum,f2sum
c
 pi=3.141592654
 x=0.0
 f1sum=1.5
 f2sum=exp(1.0)*sin(pi)
 s1=0.0
 s2=0.0
 e1=0.0
 e2=0.0
 r1=0.0
 r2=0.0
 del=1.0/10.0
 do n=1,9,2
 x=n*del
 f1=4.0/(1.0+x**2)
 f2=4.0*exp(x)*sin(pi*x)
 s1=s1+f1
 s2=s2+f2
 end do
 do n=2,8,2
 x=n*del
 f1=4.0/(1.0+x**2)
 f2=4.0*exp(x)*sin(pi*x)
 s1=s1+f1
 s2=s2+f2
 end do
 r1=(del/3.0)*(s1+f1sum)
 r2=(del/3.0)*(s2+f2sum)
 e1=atan(1.0)-r1
 e2=((pi/(1+pi**2))*(exp(1.0)+1))-r2
c
 open (unit=45,file='hw2_1a2.out',status='unknown')
 write (45,*)'simp.f output'
 write (45,*)' f1(x)',' error1',' f2(x)',' error2'
 write (45,10) r1,e1,r2,e2
10 format(1x,f10.8,2x,f10.8,2x,f10.8,2x,f10.8)
 END

10

PROBLEM 1.b.)
c Program simp2.f
c
c ASEN5317 - Assign#2
c J.Kubitschek 9/18/98
c
c Program evaluates integral of two functions:
c 1.) f(x)= 1/(1+x^2)
c 2.) f(x)= exp(x)sin(pi*x)
c over the range 0<=x<=1 using Simpson's rule. Range is
c divided into 20 equal intervals. Results include integral
c values and global error.
 INTEGER n
 REAL x,pi,del,s1,s2,f1,f2,e1,e2,r1,r2,f1sum,f2sum
c
 pi=3.141592654
 x=0.0
 f1sum=1.5
 f2sum=exp(1.0)*sin(pi)
 s1=0.0
 s2=0.0
 e1=0.0
 e2=0.0
 r1=0.0
 r2=0.0
 del=1.0/20.0
 do n=1,19,2
 x=n*del
 f1=4.0/(1.0+x**2)
 f2=4.0*exp(x)*sin(pi*x)
 s1=s1+f1
 s2=s2+f2
 end do
 do n=2,18,2
 x=n*del
 f1=2.0/(1.0+x**2)
 f2=2.0*exp(x)*sin(pi*x)
 s1=s1+f1
 s2=s2+f2
 end do
 r1=(del/3.0)*(s1+f1sum)
 r2=(del/3.0)*(s2+f2sum)
 e1=atan(1.0)-r1
 e2=((pi/(1+pi**2))*(exp(1.0)+1))-r2
c
 open (unit=45,file='hw2_1b2.out',status='unknown')
 write (45,*)'simp2.f output'
 write (45,*)' f1(x)',' error1',' f2(x)',' error2'
 write (45,10)r1,e1,r2,e2
10 format(1x,f10.8,2x,f10.8,2x,f10.8,2x,f10.8)
 END

11

PROBLEM 2 CODE:

Driver Code:
Problem 2a.) Extended Trapezoidal Rule
 PROGRAM hw22a
 REAL func,a,b,s
 EXTERNAL func
 a=0.0
 b=2.0
 s=0.0
C
 call qtrap(func,a,b,s)
C
 open(unit=45,file='hw22a.out',status='unknown')
 write(45,*)'hw2pr2a integral value = '
 write(45,10) s
10 format(2x,f10.8)
 close(45)
 END
C
 REAL FUNCTION func(x)
 REAL x
 func=(x**4)*alog10(x+sqrt(x**2+1))
 END

Problem 2b.) Simpson’s Rule
 PROGRAM hw22b
 REAL func,a,b,s
 EXTERNAL func
 a=0.0
 b=2.0
 s=0.0
C
 call qsimp(func,a,b,s)
C
 open(unit=45,file='hw22b.out',status='unknown')
 write(45,*)'hw2pr2b integral value = '
 write(45,10) s
10 format(2x,f10.8)
 close(45)
 END
C
 REAL FUNCTION func(x)
 REAL x
 func=(x**4)*alog10(x+sqrt(x**2+1))
 END

12

Problem 2c.) Romberg Method
 PROGRAM hw22c
 REAL func,a,b,s
 EXTERNAL func
 a=0.0
 b=2.0
 s=0.0
C
 call qromb(func,a,b,s)
C
 open(unit=45,file='hw22c.out',status='unknown')
 write(45,*)'hw2pr2c integral value = '
 write(45,10) s
10 format(2x,f10.8)
 close(45)
 END
C
 REAL FUNCTION func(x)
 REAL x
 func=(x**4)*alog10(x+sqrt(x**2+1))
 END

13

Subroutines/Modules:

 SUBROUTINE trapzd(func,a,b,s,n)
 INTEGER n
 REAL a,b,s,func
 EXTERNAL func
 INTEGER it,j
 REAL del,sum,tnm,x
 if (n.eq.1) then
 s=0.5*(b-a)*(func(a)+func(b))
 else
 it=2**(n-2)
 tnm=it
 del=(b-a)/tnm
 x=a+0.5*del
 sum=0.
 do 11 j=1,it
 sum=sum+func(x)
 x=x+del
11 continue
 s=0.5*(s+(b-a)*sum/tnm)
 endif
 return
 END

 SUBROUTINE qtrap(func,a,b,s)
 INTEGER JMAX
 REAL a,b,func,s,EPS
 EXTERNAL func
 PARAMETER (EPS=1.e-6, JMAX=20)
CU USES trapzd
 INTEGER j
 REAL olds
 olds=-1.e30
 do 11 j=1,JMAX
 call trapzd(func,a,b,s,j)
 if (abs(s-olds).lt.EPS*abs(olds)) return
 olds=s
11 continue
 pause 'too many steps in qtrap'
 END

 SUBROUTINE qsimp(func,a,b,s)
 INTEGER JMAX
 REAL a,b,func,s,EPS
 EXTERNAL func
 PARAMETER (EPS=1.e-6, JMAX=20)
CU USES trapzd
 INTEGER j
 REAL os,ost,st
 ost=-1.e30
 os= -1.e30
 do 11 j=1,JMAX

14

 call trapzd(func,a,b,st,j)
 s=(4.*st-ost)/3.
 if (abs(s-os).lt.EPS*abs(os)) return
 os=s
 ost=st
11 continue
 pause 'too many steps in qsimp'
 END

 SUBROUTINE qromb(func,a,b,ss)
 INTEGER JMAX,JMAXP,K,KM
 REAL a,b,func,ss,EPS
 EXTERNAL func
 PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)
CU USES polint,trapzd
 INTEGER j
 REAL dss,h(JMAXP),s(JMAXP)
 h(1)=1.
 do 11 j=1,JMAX
 call trapzd(func,a,b,s(j),j)
 if (j.ge.K) then
 call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
 if (abs(dss).le.EPS*abs(ss)) return
 endif
 s(j+1)=s(j)
 h(j+1)=0.25*h(j)
11 continue
 pause 'too many steps in qromb'
 END

 SUBROUTINE polint(xa,ya,n,x,y,dy)
 INTEGER n,NMAX
 REAL dy,x,y,xa(n),ya(n)
 PARAMETER (NMAX=10)
 INTEGER i,m,ns
 REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)
 ns=1
 dif=abs(x-xa(1))
 do 11 i=1,n
 dift=abs(x-xa(i))
 if (dift.lt.dif) then
 ns=i
 dif=dift
 endif
 c(i)=ya(i)
 d(i)=ya(i)
11 continue
 y=ya(ns)
 ns=ns-1
 do 13 m=1,n-1
 do 12 i=1,n-m
 ho=xa(i)-x
 hp=xa(i+m)-x

15

 w=c(i+1)-d(i)
 den=ho-hp
 if(den.eq.0.)pause 'failure in polint'
 den=w/den
 d(i)=hp*den
 c(i)=ho*den
12 continue
 if (2*ns.lt.n-m)then
 dy=c(ns+1)
 else
 dy=d(ns)
 ns=ns-1
 endif
 y=y+dy
13 continue
 return
 END

16

PROBLEM 3 - REVISED CODE

 PROGRAM hw23
 INTEGER NMAX
 PARAMETER(NMAX=10)
 INTEGER i
 REAL func,a,b,s,pi
 EXTERNAL func
 pi=3.14159265
 a=0.0
 b=pi/2.0
 s=0.0
 do 11 i=1,NMAX
 call midpnt(func,a,b,s,i)
11 continue
 open(unit=45,file='hw23.out',status='unknown')
 write(45,*)'hw23 integral value = '
 write(45,10) s
10 format(2x,f12.8)
 close(45)
 END
C
 REAL FUNCTION func(x)
 REAL x
 func=sin(x)/x
 END

 SUBROUTINE midpnt(func,a,b,s,n)
 INTEGER n
 REAL a,b,s,func
 EXTERNAL func
 INTEGER it,j
 REAL ddel,del,sum,tnm,x
 if (n.eq.1) then
 s=(b-a)*func(0.5*(a+b))
 else
 it=3**(n-2)
 tnm=it
 del=(b-a)/(3.*tnm)
 ddel=del+del
 x=a+0.5*del
 sum=0.
 do 11 j=1,it
 sum=sum+func(x)
 x=x+ddel
 sum=sum+func(x)
 x=x+del
11 continue
 s=(s+(a-b)*sum/tnm)/3.
 endif
Return
END

17

APPENDIX B – OUTPUT

Problem 1.a.)
trap.f output

 f1(x) error1 f2(x) error2
Computed .784982 .000416 1.064967 .009711
Exact .785398 1.074678

Problem 1.b.)
 trap2.f output
 f1(x) error1 f2(x) error2
Computed .785294 .000104 1.072278 .002400
Exact .785398 1.074678

Richardson Ext. .785398 .000000 1.074715 -.000037

Problem 1.a.)
 simp.f output
 f1(x) error1 f2(x) error2
Computed .78539824 -.00000008 1.07472277 .00004458
Exact .78539816 1.07467819

Problem 1.b.)
simp2.f output

 f1(x) error1 f2(x) error2
Computed .78539813 .00000004 1.07476400 .00000359
Exact .78539816 1.07467819

Richardson Ext. .78539814 .00000002 1.07476675 .00000084

Problem 2a.)
hw2pr2a integral value = 3.540961

Problem 2b.)
hw2pr2b integral value = 3.540961

Problem 2c.)
hw2pr2c integral value = 3.540961

Problem 3.)
hw23 integral value = 1.370615

